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In this paper, the free vibration analysis of two parallel simply supported beams
continuously joined by a Winkler elastic layer is presented. The motion of the system is
described by a homogeneous set of two partial di!erential equations, which is solved by
using the classical Bernoulli}Fourier method. The natural frequencies of the system are
determined. The initial-value problem is considered to "nd the "nal form of the free
vibrations. The free vibrations of an elastically connected double-beam complex system are
realized by synchronous and asynchronous de#ections. The presented theoretical analysis is
illustrated by a numerical example, in which the e!ect of physical parameters characterizing
the vibrating system on the natural frequencies is investigated.

( 2000 Academic Press
1. INTRODUCTION

An elastically connected double-beam system is another model of a complex continuous
system consisting of two one-dimensional solids joined by linear, elastic layer of a Winkler
type. Analogously built double-string system is the simplest model of a complex continuous
system. The transverse vibration analysis of this interesting vibratory system has been
presented by the author in a few of his early works [1}9]. In the present paper the free
vibrations of a double-beam system are considered for the simple case of simply supported
boundary conditions. Assumed particular boundary conditions make it possible to solve
the vibration problem for the beams by using the less general mathematical procedures.
Because of the same boundary conditions the vibration problems for both of these complex
continuous systems discussed (a double-string and double-beam system) are similar. Then
the vibration analysis of a double-string system can be helpful in the investigation of
a system considered.

The di!erent aspects of dynamics of an elastically connected double-beam system have
been treated by many authors: Seelig and Hoppmann II [10, 11], Kessel [12], Kessel and
Raske [13], Saito and Chonan [14, 15], Kozlov [16], Kashin [17], Rao [18], Lu and
Douglas [19], Douglas and Yang [20], Douglas [21], Oniszczuk [22}31], Chonan [32, 33],
Hyer et al. [34, 35], Stepanov [36], Dmitriyev [37], Hamada et al. [38, 39], Yamaguchi
and Saito [40], Joshi and Upadhya [41], Sylwan [42], Vaswani et al. [43], Kokhmaniuk
[44], Yankelevsky [45], Aida et al. [46], Frostig and Baruch [47, 48], Kukla and
Skalmierski [49], Kukla [50, 51], MaceH [52], Chen and Sheu [53, 54], Chen and Lin [55],
Lueschen and Bergman [56], Sakiyama et al. [57, 58], SzczesH niak [59, 60], Kawazoe et al.
[61], and CabanH ska-P"aczkiewicz [62}67]. The works [2, 4, 5, 36, 38}40, 46, 55, 61]
022-460X/00/170387#17 $35.00/0 ( 2000 Academic Press



Figure 1. The physical model of an elastically connected double-beam complex system.
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devoted to applying a double-beam system as a continuous dynamic vibration absorber
(CDVA) are especially interesting because of the great practical importance of CDVAs in
many "elds of civil and mechanical engineering.

In the present paper, the complete exact theoretical solutions of the free vibrations of
simply supported double-beam system are formulated. The general free vibration analysis
of an elastically connected double-beam system is complicated and laborious in view of the
large variety of possible combinations of the boundary conditions. Therefore, in this work
the considerations are limited only to the case of simply supported beams. The vibrations of
a general system with the homogeneous boundary conditions will be discussed by the
author in the next publications concerning this subject.

2. FORMULATION OF THE PROBLEM

The physical model of the vibrating system under consideration is composed of two
parallel, slender, prismatic and homogeneous beams joined by a Winkler elastic layer (see
Figure 1). Both beams have the same length and are simply supported at their ends. The
small undamped vibrations of the system are considered.

Using the Bernoulli}Euler beam theory the free transverse vibrations of an elastically
connected double-beam system are described by the following di!erential equations [2, 24]:
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The initial conditions in general form and boundary conditions for simply supported
beams are assumed as follows:
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3. SOLUTION OF THE PROBLEM

The homogeneous partial di!erential equations (1) with the governing boundary
conditions (2) can be solved by the Bernoulli}Fourier method assuming the solutions
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in the form
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(x) is the known mode shape function for simply supported single beam.
Introducing the general solutions (4) into equations (1) one gets the following relations:
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From the above one obtains a set of ordinary di!erential equations for the unknown time
functions
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solutions of equations (6) are as follows:
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Equations (8) have non-trivial solutions in the case when the determinant of the system
coe$cient matrix is equal to zero. This yields the following frequency (characteristic)
equation:
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Since the discriminant of this biquadratic algebraic equation is positive
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and the relationships mentioned below are also satis"ed
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After rearranging the above relations (introducing the trigonometric functions) the
unknown time functions are expressed by
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Finally, the free transverse vibrations of an elastically connected simply supported
double-beam complex system are described by the following formulae:
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The functions X
1in

(x), X
2in

(x) are the natural mode shapes of vibration of a beam system
corresponding to two sequences of the natural frequencies u

in
.

An elastically connected simply supported double-beam complex system executes two
kinds of vibrating motions: synchronous vibrations (a
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'0) with lower natural frequencies

u
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and asynchronous vibrations (a
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(0) with higher frequencies u
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The general mode shapes of vibration shown in Figure 2 are the same as the natural mode
shapes determined for a doubling-string system [1, 2, 8]. It is also seen that the nature of the
free vibrations for a double-beam system is analogous to that for a double-string system.
The mathematical form of the corresponding solutions is identical for both systems as
a consequence of governing the same boundary conditions.

To "nd the "nal form of the free vibrations the initial-value problem is solved. The
unknown constants A
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the orthogonality property of mode shape functions. In this case the classical orthogonality
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Figure 2. The general mode shapes of vibration of an elastically connected simply supported double-beam
complex system corresponding to the "rst four pairs of the natural frequencies.
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Multiplying the above relations by the eigenfunction X
m
, then integrating them with respect

to x from 0 to l and using the orthogonality condition (18) produces
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Solving these equations the following formulae making it possible to calculate the unknown
constants are obtained:
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4. NUMERICAL EXAMPLE

The free tranverse vibrations of two simply supported beams are considered to establish
the e!ect of physical parameters characterizing the vibrating system on the natural
frequencies.

The following values of the parameters are used in the numerical calculations:
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where c is a positive constant parameter.
The free vibrations of a double-beam system under consideration are described by

formulae (16). The mode shape coe$cients a
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from the rearranged expressions (12) and (15) for the above three cases of combinations of
the basic parameters of the system
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The calculations of a
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and u
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are carried out for three values of a parameters c (c"0)5; 1;
2) as a function of sti!ness modulus k, which is changed in a certain interval
k"(0}5)]105N m~2. The results of the calculations are presented in Tables 1}9 and



TABLE 1

Coe.cients of natural mode shapes a
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Variant V1 V1, 2, 3 V1

c 0)5 1 2
a
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a
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!2 !1 !0)5
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c 0)5 2 0)5 2

k]10~5 n 1 2 1 2 1 2 1 2
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TABLE 3

Natural frequencies of double-beam system u
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(s~1); V1; c"0)5

k]10~5 n 1 2 3 4 5

0 u
in

19)7 79)0 177)7 315)8 493)5
1 u

2n
58)2 96)1 185)9 320)5 496)5

2 u
2n

79)9 110)6 193)8 325)2 499)5
3 u

2n
96)9 123)4 201)4 329)8 502)5

4 u
2n

111)3 135)0 208)7 334)3 505)5
5 u

2n
124)1 145)7 215)8 338)7 508)5
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in Figures 3}5. On the diagrams the natural frequencies u
in

are additionally denoted by
subscripts 1, 2, 3, to distinguish the corresponding frequencies computed for c"0)5; 1;
2 respectively. If the natural frequency is independent of constant c, then this subindex is not
applied.

In general, an elastically connected simply supported double-beam system executes two
fundamental kinds of vibrations. The system vibrating with lower natural frequencies



TABLE 4

Natural frequencies of double-beam system u
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(s~1); V1, 2, 3; c"1
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u
1n

performs the synchronous vibrations for which the coe$cients of mode shapes a
1n

are
always positive (a

1n
'0). Next, the asynchronous vibrations are executed with higher

frequencies u
2n

at the mode shape coe$cients a
2n

, which are always negative (a
2n
(0).

It is seen that in the case c"1 all three variants correspond with the simple system of
two physically and geometrically identical beams. For this interesting double-beam
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23)8 84)1 180)3 317)2 494)2

u
2n

51)0 116)8 253)4 447)9 698)8

2
u

1n
24)0 87)4 182)8 318)7 495)2

u
2n

67)8 122)7 255)5 449)1 699)6

3
u

1n
24)0 89)6 185)1 320)2 496)2

u
2n

81)2 129)2 257)8 450)2 700)3

4
u

1n
24)1 91)0 187)2 321)7 497)2

u
2n

92)7 135)8 260)0 451)4 701)0

5
u

1n
24)1 92)0 189)1 323)1 498)2

u
2n

102)9 142)3 262)6 452)6 701)8

TABLE 8

Natural frequencies of double-beam system u
in
(s~1); V3; c"0)5

k]10~5 n 1 2 3 4 5

0
u

1n
19)7 79)0 177)7 315)8 493)5

u
2n

27)9 111)7 251)2 446)6 697)9

1
u

1n
28)6 83)5 180)3 317)4 494)5

u
2n

60)5 121)4 255)3 448)9 699)3

2
u

1n
35)4 88)2 182)9 318)9 495)5

u
2n

76)9 130)1 259)3 451)1 700)8

3
u

1n
45)9 92)9 185)4 320)5 496)5

u
2n

89)8 138)1 263)2 453)4 702)2

4
u

1n
54)8 97)5 188)0 322)0 497)5

u
2n

100)8 145)6 267)1 455)6 703)6

5
u

1n
62)7 102)0 190)5 323)5 498)5

u
2n

110)6 152)6 270)9 457)8 705)0
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system one has

u2
1n
"Kk4

n
m~1, u2

2n
"u2

1n
#X2

0
, X2

0
"2k m~1, a

1n
"1, a

2n
"!1.

The important conclusions can be drawn from the above expressions. The synchronous
natural frequencies u

1n
are not dependent on the sti!ness modulus k unlike u

2n
. The

synchronous vibrations are performed by both beams with equal amplitudes (a
1n
"1), and

the lower natural frequencies u
1n

are the same as for a single beam. As a consequence of this
an elastic layer is not deformed on the transverse direction. The asynchronous vibrations
are also performed with equal amplitudes (a

2n
"!1), and the natural frequencies u

2n
are



TABLE 9

Natural frequencies of double-beam system u
in
(s~1); V3; c"2

k]10~5 n 1 2 3 4 5

0
u

1n
14)0 55)8 125)6 223)3 348)9

u
2n

19)8 79)0 177)8 316)1 493)9

1
u

1n
11)8 52)9 123)8 222)2 348)2

u
2n

44)1 89)8 183)2 319)2 495)9

2
u

1n
11)6 51)5 122)4 221)2 347)5

u
2n

58)7 98)8 188)2 322)2 497)9

3
u

1n
11)6 50)2 121)1 220)3 346)8

u
2n

70)4 106)5 192)9 325)2 499)8

4
u

1n
11)5 49)8 120)1 219)4 346)2

u
2n

80)3 113)5 197)4 328)1 501)8

5
u

1n
11)5 49)3 119)1 218)6 345)6

u
2n

89)2 120)1 201)7 330)9 503)7

Figure 3. Natural frequencies of double-beam system u
in

as a function of elastic layer sti!ness modulus k, for
various values of a parameter c; variant V1. Notation: in

1
, in

2
, in

3
denote the graphs of u

in
for c"0)5; 1;

2 respectively (i"1, 2; n"1, 2,2, 5).
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Figure 4. Natural frequencies of double-beam system u
in

as a function of elastic layer sti!ness modulus k, for
various values of a parameter c; variant <2. Key as for Figure 3.
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identical as for a single beam vibrating on an elastic foundation of sti!ness modulus 2k.
The exemplary mode shapes of the free vibrations for this particular case are shown in
Figure 6.

From the numerical analysis it is seen that there is a general tendency to increase
the natural frequencies u

in
in the case of increasing the layer sti!ness modulus k

for each system variant. The increase for lower natural frequencies is greater than for
higher ones. For the variant V1 the simultaneous proportional variation of #exural
rigidity and mass of the second beam, implies that the synchronous quantities a

1n
and u

1n
are not dependent on an assumed constant c and layer sti!ness modulus k

unlike the asynchronous quantities a
2n

and u
2n

. Their values diminish when a parameter
c grows. For the variant V2 the beams have the same masses and di!erent #exural
rigidities. In general, the change of the second beam #exural rigidity causes the natural
frequencies to increase, especially the asynchronous frequencies u

2n
for lower harmonics.

For the variant V3 the beams have the same #exural rigidities and di!erent masses.
The increase of the second beam mass generates the evident reduction of the natural
frequencies which is more considerable for the higher harmonics. This e!ect is greater for
the frequencies u

2n
.



Figure 5. Natural frequencies of double-beam system u
in

as a function of elastic layer sti!ness modulus k, for
various values of a parameter c; variant <3. Key as for Figure 3.
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5. CONCLUSIONS

The free transverse vibration theory of an elastically connected simply supported
double-beam complex system is developed. The solutions of the di!erential equations of
motion are formulated by the classical Bernoulli}Fourier method. The initial-value
problem is considered to "nd the "nal form of the free vibrations. Two in"nite sequences of
the natural frequencies u

1n
, u

2n
(u

1n
(u

2n
) are determined. The free vibrations of a double

beam are realized by two kinds of motions: synchronous vibrations (a
1n
'0) with lower

natural frequencies u
1n

and asynchronous vibrations (a
2n
(0) with higher frequencies u

2n
.

The numerical analysis shows the e!ect of physical parameters of the system on the natural
frequencies. It is seen that the nature of the free vibrations for a simply supported
double-beam system and for a double-string system [1, 2, 8] is similar. It can be also shown
that a corresponding two-degree-of-freedom complex discrete system described in
references [1, 2, 9] is an analogue of an elastically connected double-body complex
continuous system represented for example by a double-beam system [1, 38, 39, 46, 55, 61],
double-string system [1, 2, 8, 9] and double-membrane system [2, 68]. A beam supported
on an elastic foundation is a particular case of a double-beam system considered. The
solution procedure applied in this paper can be used for the investigation of general
elastically connected multi-beam complex system [2, 18, 24, 45].



Figure 6. The mode shapes of vibration of an elastically connected simply supported double-beam system
corresponding to the "rst "ve pairs of the natural frequencies (case c"1).

400 Z. ONISZCZUK
REFERENCES

1. Z. ONISZCZUK 1996 Scienti,c=orks of=arsaw ;niversity of ¹echnology, Civil Engineering 130,
45}65. Transverse vibrations of an elastically connected double-string system (in Polish).

2. Z. ONISZCZUK 1997 <ibration Analysis of the Compound Continuous Systems with Elastic
Constraints. RzeszoH w: Publishing House of RzeszoH w University of Technology (in Polish).

3. Z. ONISZCZUK 1998 Proceedings of the XVIth Polish Conference on ¹heory of Machines and
Mechanisms, RzeszoH w-Jawor, Vol. II, 635}642. Transverse vibrations of elastically connected
double-string compound system (in Polish).



FREE VIBRATIONS OF DOUBLE-BEAM SYSTEM 401
4. Z. ONISZCZUK 1998 Proceedings of the VIIIth Polish Symposium 00¹he In-uence of <ibrations on
Environment11, KrakoH w-Janowice, 269}274. The dynamic vibration absorption in the compound
continuous system of two solids connected by elastic constraints (in Polish).

5. Z. ONISZCZUK (in press) Machine Dynamics Problems. The dynamic vibration absorption in the
complex continuous systems.

6. Z. ONISZCZUK 1999 Proceedings of the Xth Symposium on Dynamics of Structures, RzeszoH w 99,
Scienti,c =orks of RzeszoH w ;niversity of ¹echnology, Mechanics 174, 327}332. Free vibration
analysis of elastically connected double-string complex system.

7. Z. ONISZCZUK 1999 Proceedings of the 7th ;krainian-Polish Seminar 00¹heoretical Foundations of
Civil Engineering11, Dnepropetrovsk, =arsaw, 343}352. Forced vibration analysis of elastically
connected double-string complex system.

8. Z. ONISZCZUK 2000 Journal of Sound and <ibration 232, 355}366. Transverse vibrations of
elastically connected double-string complex system, Part I: free vibrations.

9. Z. ONISZCZUK 2000 Journal of Sound and <ibration 232, 367}386. Transverse vibrations of
elastically connected double-string complex system, Part II: forced vibrations.

10. J. M. SEELIG and W. H. HOPPMANN II 1964 Journal of the Acoustical Society of America 36, 93}99.
Normal mode vibrations of systems of elastically connected parallel bars.

11. J. M. SEELIG and W. H. HOPPMANN II 1964 ¹ransactions of the American Society of Mechanical
Engineers, Journal of Applied Mechanics 31, 621}626. Impact on an elastically connected
double-beam system.

12. P. G. KESSEL 1966 Journal of the Acoustical Society of America 40, 684}687. Resonances excited in
an elastically connected double-beam system by a cyclic moving load.

13. P. G. KESSEL and T. F. RASKE 1971 Journal of the Acoustical Society of America 49,
371}373. Damped response of an elastically connected double-beam system due to a cyclic
moving load.

14. H. SAITO and S. CHONAN 1968 ¹ransactions of the Japan Society of Mechanical Engineers 34,
1898}1907. Vibrations of elastically connected double-beam systems.

15. H. SAITO and S. CHONAN 1969 ¹echnology Reports. ¹ohoku;niversity 34, 141}159. Vibrations of
elastically connected double-beam systems.

16. A. B. KOZLOV 1968 Izvestiya <sesoyusnogo Nautchno-Issledovatelskogo Instituta Ghidrotekhniki
87, 192}200. Vibrations of elastically connected bars (in Russian).

17. P. A. KASHIN 1974 Stroitelnaya Mekhanika, Moscow, 108}118. Free transverse vibrations of
continuously elastically connected beams (in Russian).

18. S. S. RAO 1974 Journal of the Acoustical Society of America 55, 1232}1237. Natural vibrations of
systems of elastically connected Timoshenko beams.

19. Y. P. LU and B. E. DOUGLAS 1974 Journal of Sound and <ibration 32, 513}516. On the forced
vibrations of a three-layer damped sandwich beams.

20. B. E. DOUGLAS and J. C. S. YANG 1978 American Institute of Aeronautics and Astronautics Journal
16, 925}930. Transverse compressional damping in the vibratory response of
elastic}viscoelastic}elastic beams.

21. B. E. DOUGLAS 1986 Journal of Sound and <ibration 104, 343}347. Compressional damping in
three-layer beams incorporating nearly incompressible viscoelastic cores.

22. Z. ONISZCZUK 1974 Journal of ¹heoretical and Applied Mechanics 12, 71}83. Transversal
vibration of the system of two beams connected by means of an elastic element (in Polish).

23. Z. ONISZCZUK 1976 Journal of ¹heoretical and Applied Mechanics 14, 273}282. Free transverse
vibrations of an elastically connected double-beam system (in Polish).

24. Z. ONISZCZUK 1977 Ph.D. ¹hesis, Cracow ;niversity of ¹echnology. Transverse vibrations of
elastically connected double-beam system (in Polish).

25. Z. ONISZCZUK 1979 ¹echnical =orks, Committee of Applied Mechanics, RzeszoH w III, 201}227.
Tranverse vibrations of elastically connected double-beam system (in Polish).

26. Z. ONISZCZUK 1986 Proceedings of the VIth Symposium on Dynamics of Structures,
RzeszoH w-%anH cut, Scienti,c =orks of RzeszoH w ;niversity of ¹echnology, Mechanics 31, 161}164.
Free transverse vibrations of two beam system connected by nonlinear elastic element (in Polish).

27. Z. ONISZCZUK 1988 Proceedings of the XIIIth Symposium 00<ibrations in Physical Systems11,
PoznanH -B!azR ejewko, 191}192. Free transverse vibrations of the system of two elastically connected
multi-span continuous beams.

28. Z. ONISZCZUK 1989 Proceedings of the P¸->;189 Polish}>ugoslav Conference on New ¹rends in
Mechanics of Solids and Structures, RzeszoH w-Boguchwa!a. Forced transverse vibrations of the
system of two elastically connected multi-span continuous beams.



402 Z. ONISZCZUK
29. Z. ONISZCZUK 1989 Journal of ¹heoretical and Applied Mechanics 27, 347}361. Free transverse
vibrations of an elastically connected double-beam system with concentrated masses, elastic and
rigid supports (in Polish).

30. Z. ONISZCZUK 1994 Scienti,c=orks of RzeszoH w ;niversity of ¹echnology, Mechanics 126, 49}71.
Forced transverse vibrations of elastically connected double-beam system with concentrated
masses, elastic and rigid supports (in Polish).

31. Z. ONISZCZUK 1997 Proceedings of the 5th ;krainian-Polish Seminar 00¹heoretical Foundations of
Civil Engineering11, Dnepropetrovsk, =arsaw, 351}360. Free vibrations of elastically connected
double-beam system (in Polish).

32. S. CHONAN 1975 ¹ransactions of the Japan Society of Mechanical Engineers 41, 2815}2824.
Dynamical behaviours of elastically connected double-beam system subjected to an impulsive
load.

33. S. CHONAN 1975 Bulletin of the Japan Society of Mechanical Engineers 19, 595}603. Dynamical
behaviours of elastically connected double-beam system subjected to an impulsive load.

34. M. W. HYER, W. J. ANDERSON and R. A. SCOTT 1976 Journal of Sound and<ibration 46, 121}136.
Non-linear vibrations of three-layer beams with viscoelastic cores, I: theory.

35. M. W. HYER, W. J. ANDERSON and R. A. SCOTT 1978 Journal of Sound and <ibration 61, 25}30.
Non-linear vibrations of three-layer beams with viscoelastic cores, II: experiment.

36. A. V. STEPANOV 1982 Prikladnaya Mekhanika 18, 102}106. Optimization of free vibration
damping coe$cient in two element continuous system (in Russian).

37. A. S. DMITRIYEV 1983 Prikladnaya Mekhanika 19, 111}115. Dynamics of layered beam structure
subjected to a moving concentrated force (in Russian).

38. T. R. HAMADA, H. NAKAYAMA and K. HAYASHI 1983 Bulletin of the Japan Society of Mechanical
Engineers 26, 1936}1942. Free and forced vibrations of elastically connected double-beam
systems.

39. T. R. HAMADA, H. NAKAYAMA and K. HAYASHI 1983 ¹ransactions of the Japan Society of
Mechanical Engineers 49, 289}295. Free and forced vibrations of elastically connected
double-beam systems.

40. H. YAMAGUCHI and H. SAITO 1984 Earthquake Engineering and Structural Dynamics 12, 467}479.
Vibrations of beams with an absorber consisting of a viscoelastic solid and a
beam.

41. A. JOSHI and A. R. UPADHYA 1987 Journal of Sound and <ibration 117, 115}130. Modal coupling
e!ects in the free vibration of elastically interconnected beams.

42. O. SYLWAN 1987 Journal of Sound and <ibration 118, 35}45. Shear and compressional damping
e!ects of constrained layered beams.

43. J. VASWANI, N. T. ASNANI and B. C. NAKRA 1988 Composite Structures 10, 231}245. Vibration
and damping analysis of curved sandwich beams with a viscoelastic core.

44. S. S. KOKHMANIUK 1989 Dinamika Konstruktsiy pri <ozdeystvii Kratkovremennykh Nagruzok.
Kiev: Naukova Dumka (in Russian).

45. Z. YANKELEVSKY 1991 International Journal of Mechanical Sciences 33, 169}177. Analysis of
composite layered elastic foundation.

46. T. AIDA, S. TODA, N. OGAWA and Y. IMADA 1992 Journal of Engineering Mechanics 118, 248}258.
Vibration control of beams by beam-type dynamic vibration absorbers.

47. Y. FROSTIG and M. BARUCH 1993 Journal of Engineering Mechanics 119, 476}495. High-order
buckling analysis of sandwich beams with transversely #exible core.

48. Y. FROSTIG and M. BARUCH 1994 Journal of Sound and<ibration 176, 195}208. Free vibrations of
sandwich beams with a transversely #exible core: a high-order approach.

49. S. KUKLA and B. SKALMIERSKI 1994 Journal of ¹heoretical and Applied Mechanics 32, 581}590.
Free vibration of a system composed of two beams separated by an elastic layer.

50. S. KUKLA 1994 Journal of Sound and <ibration 172, 130}135. Free vibration of the system of two
beams connected by many translational springs.

51. S. KUKLA 1999 Proceedings of the Xth Symposium on Dynamics of Structures, RzeszoH w 99,
Scienti,c=orks of RzeszoH w;niversity of ¹echnology, Mechanics 174, 171}176. Free vibrations of
beam system modelling a telescopic boom (in Polish).

52. M. MACED 1994 Journal of Sound and <ibration 172, 577}591. Damping of beam vibrations by
means of thin constrained viscoelastic layer: evaluation of a new theory.

53. Y.-H. CHEN and J.-T. SHEU 1994 ¹ransactions of the American Society of Mechanical Engineers,
Journal of <ibration and Acoustics 116, 350}356. Dynamic characteristics of layered beam with
#exible core.



FREE VIBRATIONS OF DOUBLE-BEAM SYSTEM 403
54. Y.-H. CHEN and J.-T. SHEU 1995 Journal of Engineering Mechanics 121, 340}344. Beam on
viscoelastic foundation and layered beam.

55. Y.-H. CHEN and C.-Y. LIN 1998 Journal of Sound and <ibration 212, 759}769. Structural analysis
and optimal design of a dynamic absorbing beam.

56. G. G. G. LUESCHEN and L. A. BERGMAN 1996 Journal of Sound and <ibration 191, 613}627.
Green's function synthesis for sandwiched distributed parameter systems.

57. T. SAKIYAMA, H. MATSUDA and C. MORITA 1996 Journal of Sound and <ibration 191, 189}206.
Free vibration analysis of sandwich beam with elastic or viscoelastic core by applying the discrete
Green function.

58. T. SAKIYAMA, H. MATSUDA and C. MORITA 1997 Journal of Sound and <ibration 203, 505}522.
Free vibration analysis of sandwich arches with elastic or viscoelastic core and various kinds of
axis-shape and boundary conditions.

59. W. SZCZESD NIAK 1996 Proceedings of the 4th Polish-;krainian Seminar 00¹heoretical Foundations of
Civil Engineering11, Dnepropetrovsk,=arsaw, Vol. II, 79}105. Vibrations of sandwich beam under
moving loads (in Polish).

60. W. SZCZESD NIAK 1998 Scienti,c=orks of=arsaw ;niversity of ¹echnology, Civil Engineering 132,
111}151. Vibration of elastic sandwich and elastically connected double-beam system under
moving loads (in Polish).

61. K. KAWAZOE, I. KONO, T. AIDA, T. ASO and K. EBISUDA 1998 Journal of Engineering Mechanics
124, 248}258. Beam-type dynamic vibration absorber comprised of free-free beam.

62. K. CABAND SKA-P|ACZKIEWICZ 1998 Proceedings of the XXXVIIth Symposium 00Modelling in
Mechanics11, Gliwice, Scienti,c=orks of Applied Mechanics Department of Silesian ;niversity of
¹echnology 6, 49}54. Dynamics of system of two Bernoulli-Euler beams with the visco-elastic
interlayer (in Polish).

63. K. CABAND SKA-P|ACZKIEWICZ 1998 Proceedings of the XVIIIth Symposium 00<ibrations in Physical
Systems11, PoznanH -B"azR ejewko, 83}84. The method of a solution of a problem of vibration of the
system of two beams with damping.

64. K. CABAND SKA-P|ACZKIEWICZ 1998 Proceedings of the 6th Polish-;krainian Seminar 00¹heoretical
Foundations of Civil Engineering11, Dnepropetrovsk,=arsaw, 59}68. Free vibrations of system of
string-beam with the visco-elastic interlayer (in Polish).

65. K. CABAND SKA-P|ACZKIEWICZ 1999 Proceedings of the 7th ;krainian-Polish Seminar 00¹heoretical
Foundations of Civil Engineering11, Dnepropetrovsk,=arsaw, 195}200. The in#uence of axial forces
on free vibration of the system of two viscoelastic beams coupled by a viscoelastic interlayer (in
Polish).

66. K. CABAND SKA-P|ACZKIEWICZ 1999 Engineering ¹ransactions 47, 21}37. Free vibration of the
system of two Timoshenko's beams coupled by a viscoelastic interlayer.

67. K. CABAND SKA-P|ACZKIEWICZ and N. D. PANKRATOVA 1999 Proceedings of the XXXVIIIth
Symposium 00Modelling in Mechanics11, Gliwice, Scienti,c=orks of Applied Mechanics. Department
of Silesian ;niversity of ¹echnology 9, 23}28. The dynamic analysis of the system of two beams
coupled by an elastic interlayer.

68. Z. ONISZCZUK 1999 Journal of Sound and <ibration 221, 235}250. Transverse vibrations of
elastically connected rectangular double-membrane compound system.


	1. INTRODUCTION
	Figure 1

	2. FORMULATION OF THE PROBLEM
	3. SOLUTION OF THE PROBLEM
	Figure 2

	4. NUMERICAL EXAMPLE
	TABLE 1
	TABLE 2
	TABLE 3
	TABLE 4
	TABLE 5
	TABLE 6
	TABLE 7
	TABLE 8
	TABLE 9
	Figure 3
	Figure 4
	Figure 5

	5. CONCLUSIONS
	Figure 6

	REFERENCES

