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In this paper, the free vibration analysis of two parallel simply supported beams
continuously joined by a Winkler elastic layer is presented. The motion of the system is
described by a homogeneous set of two partial differential equations, which is solved by
using the classical Bernoulli-Fourier method. The natural frequencies of the system are
determined. The initial-value problem is considered to find the final form of the free
vibrations. The free vibrations of an elastically connected double-beam complex system are
realized by synchronous and asynchronous deflections. The presented theoretical analysis is
illustrated by a numerical example, in which the effect of physical parameters characterizing
the vibrating system on the natural frequencies is investigated.
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1. INTRODUCTION

An elastically connected double-beam system is another model of a complex continuous
system consisting of two one-dimensional solids joined by linear, elastic layer of a Winkler
type. Analogously built double-string system is the simplest model of a complex continuous
system. The transverse vibration analysis of this interesting vibratory system has been
presented by the author in a few of his early works [1-9]. In the present paper the free
vibrations of a double-beam system are considered for the simple case of simply supported
boundary conditions. Assumed particular boundary conditions make it possible to solve
the vibration problem for the beams by using the less general mathematical procedures.
Because of the same boundary conditions the vibration problems for both of these complex
continuous systems discussed (a double-string and double-beam system) are similar. Then
the vibration analysis of a double-string system can be helpful in the investigation of
a system considered.

The different aspects of dynamics of an elastically connected double-beam system have
been treated by many authors: Seelig and Hoppmann II [10, 11], Kessel [12], Kessel and
Raske [13], Saito and Chonan [14, 15], Kozlov [16], Kashin [17], Rao [18], Lu and
Douglas [19], Douglas and Yang [20], Douglas [21], Oniszczuk [22-31], Chonan [32, 33],
Hyer et al. [34, 35], Stepanov [36], Dmitriyev [37], Hamada et al. [38, 39], Yamaguchi
and Saito [40], Joshi and Upadhya [41], Sylwan [42], Vaswani et al. [43], Kokhmaniuk
[44], Yankelevsky [45], Aida et al. [46], Frostig and Baruch [47,48], Kukla and
Skalmierski [49], Kukla [50, 51], Macé [52], Chen and Sheu [53, 54], Chen and Lin [55],
Lueschen and Bergman [56], Sakiyama et al. [57, 58], Szczesniak [59, 60], Kawazoe et al.
[61], and Cabanska-Placzkiewicz [62-67]. The works [2,4,5,36,38-40, 46, 55, 61]
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Figure 1. The physical model of an elastically connected double-beam complex system.

devoted to applying a double-beam system as a continuous dynamic vibration absorber
(CDVA) are especially interesting because of the great practical importance of CDVAs in
many fields of civil and mechanical engineering.

In the present paper, the complete exact theoretical solutions of the free vibrations of
simply supported double-beam system are formulated. The general free vibration analysis
of an elastically connected double-beam system is complicated and laborious in view of the
large variety of possible combinations of the boundary conditions. Therefore, in this work
the considerations are limited only to the case of simply supported beams. The vibrations of
a general system with the homogeneous boundary conditions will be discussed by the
author in the next publications concerning this subject.

2. FORMULATION OF THE PROBLEM

The physical model of the vibrating system under consideration is composed of two
parallel, slender, prismatic and homogeneous beams joined by a Winkler elastic layer (see
Figure 1). Both beams have the same length and are simply supported at their ends. The
small undamped vibrations of the system are considered.

Using the Bernoulli-Euler beam theory the free transverse vibrations of an elastically
connected double-beam system are described by the following differential equations [2, 24]:

K1W11V + m1W1 + k(Wl - W2) = 0, KzWIZV + mz\./{JZ + k(Wz - Wl) = 0, (1)

where w; = w;(x, t) is the transverse beam deflection; x, t are the spatial co-ordinate and the
time; E; is the Young modulus of elasticity; F; is the cross-sectional area of the beam; J; is
the moment of inertia of the beam cross-section; K; is the flexural rigidity of the beam; k is
the stiffness modulus of a Winkler elastic layer; [ is the length of the beam and p; is the
mass density,

Ki = E,'Ji, m; = piFi7 Wi = an/at, W; = awi/ﬁx, i= 1, 2.

The initial conditions in general form and boundary conditions for simply supported
beams are assumed as follows:

wi(0, 1) = w}(0,1) = wi(l,t) = wi(l,t) =0, )
wi(x,0) = wip(x), Wi(x, 0) = vio(x), i=1,2. (3)

3. SOLUTION OF THE PROBLEM

The homogeneous partial differential equations (1) with the governing boundary
conditions (2) can be solved by the Bernoulli-Fourier method assuming the solutions
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in the form
wix,t) = Y X, (x)Su(t) = ) sin(k,x)S; (1), i=1,2 )
n=1 n=1
where S;,(t) is the unknown time function;
X, (x)=sin(k,x), k,=1"tnn, n=123,.... (%)

X,(x) is the known mode shape function for simply supported single beam.
Introducing the general solutions (4) into equations (1) one gets the following relations:

Z [Sln + (Klkﬁ + k)ml_lsln - kml_ISZn]Xn = 0>
n=1

z [SZn + (KZki + k)mEISZn - kmglsln]xn =0.

n=1

From the above one obtains a set of ordinary differential equations for the unknown time
functions

Sin+ Q11,810 — Q3052, =0, 82, + 935,85, — 93651, =0, (6)
where
Qi = (Kiky + l)m; Y, Qi =km; ', Qi = Q10Q350 =k (mymy)~", i=1,2,

Qi and Q,0 denote partial and coupling frequency of the system respectively. The
solutions of equations (6) are as follows:

Sln(t) = Cn eia),,t’ S2n(t) = Dneiwnta 1 = (_ 1)1/2’ (7)

where w, is the natural frequency of the system. By substituting them into equations (6)
results in the following system of homogeneous algebraic equations for the unknown
constants C,, D,,:

(Q%In - wnz)cn - Q%ODn = Oa (Q%Zn - wf)D,, - Q%OCH = 0 (8)

Equations (8) have non-trivial solutions in the case when the determinant of the system
coefficient matrix is equal to zero. This yields the following frequency (characteristic)
equation:

oy — (Q11n + Q3n)0f + (211,252, — Q120) =0 &)
or
oy — [(Kiky + kymi ' + (K ky + kym; Yo}
+ ky [Ky Ko ky + k(Ky + Kp)](mym,)~* = 0. (10)
Since the discriminant of this biquadratic algebraic equation is positive

D = (Q31, + 9232,)" — HQ71,232, — Q120) = (@11, — 932,)% +4Q1,0>0
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and the relationships mentioned below are also satisfied
Q11,2320 — Q120) > 0, (11, + Q3,,) > D2,
then the characteristic equation (9) has two different, real, positive roots w7 ,,:
0F 20 = 05{(Q71, + 235 F [(Q11, — 2320)° +4Q1201'%}, 01, < s (11)

One obtains two infinite sequences of natural frequencies wq,, w,, (v, < ®,,) in the
form

@1 20 = 05 {[(Kyky + K)my '+ (Kokd + kymy '] F (LK o ky + Kymy !
+ (Ks ki + kym3 1% — 4k (mym,) ' [K KLk + k(Ky + Ky)])V2). (12)
Now the solutions (7) may be written as
S14t) = C1,e!®! 4+ Cype 190t 4 Cy,el%! 4 Cype” 9!
Saout) = Dy,€' " + Dy,e” vt 4 Dy, e + Dy,e” 0t

After rearranging the above relations (introducing the trigonometric functions) the
unknown time functions are expressed by

2

Sln(t) = i ’Ttn(t) = Z [Ain sin (wint) + Bin Cos (win[)]’

i=1

(13)
2 2
SZn(t) = Z Qin Tin(t) = Z [Ain Sin (wint) + Bin COS (wint)] Aiys
i=1 i=1
where
Tin(t) = Ain sin (wint) + Bin COS (win t)a (14)
aim = (Kiky + k —myop)k™" = k(Koky + k —mywi) ™! = Q16 (Q11, — 0f)
= Q3(Q%, —02)7Y, k,=1"'nm, i=12 n=123.... (15)

It is important to note that the coefficients a;, (15) are as follows:
di,on = 0-5Q1¢ {(Qim —Q3,,) + [(QF1, — 23,0 + 4Q‘i20]1/2}, ay, >0, a5, <0,
Ainlop = — mlmz_1 = - ]\/I1Mz_1 = - Q1_OZQ§0a M; = m;l = p;Fl.

It is proved that the coefficient a,, dependent on lower natural frequency w,, is always
positive while a,, dependent on higher frequency w,, is always negative.



FREE VIBRATIONS OF DOUBLE-BEAM SYSTEM 391

Finally, the free transverse vibrations of an elastically connected simply supported
double-beam complex system are described by the following formulae:

2 c9 2

X, (x)S1,(t) = Z X,(x) Y T =Y, Y Xiw(x) Tiu(t)

1 i=1 n=1i=1

wi(x, t) =

18

2

n=1 i=1
(16)
© 2 © 2
WZ(X’ t) = Z S2n(t) - Z X ) Z Qip Tin(t) = Z Z Ain X,,(X) TEn(I)
= = i=1 n=1i=1
= i 22: XZm(x m([) = Z sin (k X Z [Aln sin (wmt) + B;,cos (wm t)] Aip,
n=1i=1 n= i=
where
Xlin(x) = Xn(x) = sin (an), XZin(x) = aian(x) = Qijp sin (knx)' (17)

The functions X;,(x), X ,;,(x) are the natural mode shapes of vibration of a beam system
corresponding to two sequences of the natural frequencies w;,,.

An elastically connected simply supported double-beam complex system executes two
kinds of vibrating motions: synchronous vibrations (a, > 0) with lower natural frequencies
wy, and asynchronous vibrations (a,, < 0) with higher frequencies w,,,.

The general mode shapes of vibration shown in Figure 2 are the same as the natural mode
shapes determined for a doubling-string system [ 1, 2, 8]. It is also seen that the nature of the
free vibrations for a double-beam system is analogous to that for a double-string system.
The mathematical form of the corresponding solutions is identical for both systems as
a consequence of governing the same boundary conditions.

To find the final form of the free vibrations the initial-value problem is solved. The
unknown constants A;, and B;, are determined from the assumed initial conditions (3) using
the orthogonality property of mode shape functions. In this case the classical orthogonality
condition is applied:

1 1
J XX, dx = f sin (k,,x) sin (k,x)dx = ¢J,, (18)
0 0

1 1
c=c2= f X2dx = f sin? (k,x)dx = 0-51,
0

0

Omn 18 the Kronecker delta function: §,,, = 0 for m # n and 4,,, = 1 for m = n. Substitution
the solutions (16) into the initial conditions (3) gives

0 2

© 2
Wio = Z X" Z Bi"’ Uio = Z Xn Z winAin,
n=1 i=1 i=

o 2 o 2
Wro = Z Xn Z ai,,Bi,,, Uyo = Z Xn Z ainwinAi"'
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X

i=1 D i=2
n=1 1 n=1
Wy @ 0y
a; >0 X 4y <0
k==l X,,, = sin (k%) X,,, =sin (k)
Xo1 =ay, sin (kyx) X, = @y sin (kx)

i=1 i=2
n=2 ne2
@1 Wy
a;,, >0 Ay <
ky=2nal" X, = sin (kyx) Xy, =sin (kyx)

) Xo1p = ay; sin (kyx) X357 = ay, sin (kyx)
i=1 | i=2
n=3 =3
Wiz o,
a; >0 . 4 4y < 0
ky=3nl” X3 =sin (ksx) X3 = sin (k%)

) Xo13 = ayy sin (k3x) Xy23 = dos sin (kqx)
i=1 i=2
n=4 =4
s I Wy
a, >0 . ' 1y, < 0
ky=4nl™ X1y = sin (k) Xy =sin (l.<4x)

X014 = ay sin (kyx) Xoy4 = apy sin (kyx)

Figure 2. The general mode shapes of vibration of an elastically connected simply supported double-beam
complex system corresponding to the first four pairs of the natural frequencies.

Multiplying the above relations by the eigenfunction X, then integrating them with respect
to x from 0 to [ and using the orthogonality condition (18) produces

I 2 I 2
CIJ\ WIOAXvn dx = Z Bins CIJ\ leXndx = Z winAinr
(0]

i=1 0 i=1

1 2 1 2
-1 -1
c J WooX, dx = Z iy Bin, c j V30X, dx = Z iy @iy Ay

o i=1 0 i=1

Solving these equations the following formulae making it possible to calculate the unknown
constants are obtained:

1

A= (C1nw1n)1J (az4U10 — V20)sin (k,x)dx,
0
1

Az = (CanZH)IJ (@110 — v20)sin (k,x)dx,

0

, (19)
By, = Cfnl J (a2,W10 — Wao)sin (k,x) dx,

0

1
B, = Cfnl j (a1,W10 — Wao)sin (k,x) dx,

0
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where

Cin= —Cop = (a2n - aln)c = 0519;02 (w%n - w%n)

4. NUMERICAL EXAMPLE

The free tranverse vibrations of two simply supported beams are considered to establish
the effect of physical parameters characterizing the vibrating system on the natural
frequencies.

The following values of the parameters are used in the numerical calculations:

E=1x10"°Nm~2, F=5x10"2m? J=4x10"*m*
K=EJ=4x10°Nm? k=(0-5x10°Nm~2% [=10m,
c=051;2 m=pF=1x10*kgm™!, p=2x103kgm 3.
The problem is solved for three variants of the system which are denoted as
V1. K, =K, K,;=cK, my=m, m,=cm,
V2. K=K, K,=cK, mj=m, i=1,2,
V3. K;=K, i=12 my=m, m,=cm,

where ¢ is a positive constant parameter.

The free vibrations of a double-beam system under consideration are described by
formulae (16). The mode shape coefficients a,, and natural frequencies w;, are evaluated
from the rearranged expressions (12) and (15) for the above three cases of combinations of
the basic parameters of the system

V9. ai,=1, ay,=—c Y, ay,a0,=—c 1,

o1, =Kkim™', 03, =0, +Q%, Q=0+c )Ykm !,
V2. ay, = (Kk¥ +k —moi)k™', aj,a,,=— 1.

07 2, =05{[(1 + )Kky +2kIm™ ' F ([1 — o)Kkym™ 1> + 4k*m~2)"/2},
V3. a;,=(Kkf +k—moj)k™ !, ay,a5,=—c?,

0120 =05{(1+c H(Kky+kym™* F([(1 —c™ Y (Kky + kym™']* + 4k*(cm?)~H)'/2}.

The calculations of a;, and w;, are carried out for three values of a parameters ¢ (¢ = 0-5; 1;
2) as a function of stiffness modulus k, which is changed in a certain interval
k = (0-5)x 10N m 2. The results of the calculations are presented in Tables 1-9 and
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TABLE 1

Coefficients of natural mode shapes a;,

Variant A\t V1, 2,3 Vi1
c 0-5 1 2
ai, 1
s, -2 —1 —05
TABLE 2

Coefficients of natural mode shapes a;,

Variant V2 V3
c 05 2 05 2
kx10753 n 1 2 1 2 1 2 1 2
1 a, 1-10 3-39 0-82 016 0-58 026 1-25 444
ay, — 091 —0-29 —-121 —-620 —350 —764 —040 —0-11
5 a, 1-05 2:04 091 0-30 0-57 023 1-13 2-81
s, — 095 — 049 -110 —-336 —352 —879 —044 —-018
3 aqy 1-03 1-64 094 0-40 043 020 1-09 2:24
as, — 097 — 061 — 107 —249 —468 —994 —046 —022
4 a, 1-02 1-46 095 049 035 0-18 1-06 1-94
ay, — 098 — 069 —-105 —-205 —-577 —1099 —047 —026
5 a, 1-02 136 096 0-55 029 017 1-05 1-76
Ay, — 098 — 074 —104 —180 —68 —12:05 —048 —028
TABLE 3

Natural frequencies of double-beam system w;,(s”1); V1; ¢ = 0-5

kx1073 n 1 2 3 4 5
0 Win 197 79-0 1777 3158 493-5
1 W2y 582 96-1 1859 3205 4965
2 Wy 799 1106 193-8 3252 499-5
3 Wap 969 123-4 201-4 3298 5025
4 Wy 111-3 1350 208-7 3343 505-5
5 Wap 1241 1457 2158 3387 508-5

in Figures 3-5. On the diagrams the natural frequencies w;, are additionally denoted by
subscripts 1, 2, 3, to distinguish the corresponding frequencies computed for ¢ = 0-5; 1;
2 respectively. If the natural frequency is independent of constant ¢, then this subindex is not
applied.

In general, an elastically connected simply supported double-beam system executes two
fundamental kinds of vibrations. The system vibrating with lower natural frequencies
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TABLE 4

Natural frequencies of double-beam system w;, (s~ 1); V1,2,3; ¢ =1

kx1073 n 1 2 3 4 5
0 Win 19-7 79-0 1777 3158 493-5
1 Way 489 90-7 183-2 319:0 495-5
2 Wan 663 101-2 1886 3221 497-5
3 Way 799 110-6 193-8 3252 499-5
4 Wap 916 119-3 1989 3282 501-5
5 Way 1019 127-4 2039 3313 503-5
TABLE 5

Natural frequencies of double-beam system w;,(s~1); V1; ¢ =2

kx1073 n 1 2 3 4 5
0 Wi 197 79-0 1777 3158 493-5
1 Woy 43-5 879 181-8 3182 495-0
2 W 582 96-1 1859 3205 4965
3 Way 69-9 103-6 1899 3229 498-0
4 Wan 799 110-6 193-8 3252 499-5
5 Way 888 1172 197-6 3275 501-0
TABLE 6

Natural frequencies of double-beam system w;,(s™'); V2; ¢ = 0-5

kx1073 n 1 2 3 4 5
0 W1n 140 56:0 1259 2239 349-8
Woy 19-1 78-8 177-3 3153 492-6
1 D1y 17-0 62-0 129-6 2260 3512
oy 479 866 180-3 3169 493-6
2 Wiy 17-0 64-4 132-7 2281 3526
Wap 655 959 1836 3185 494-7
3 Win 170 656 1353 2301 3539
W2y 79-3 105-1 1871 320-3 4957
4 W1n 17-1 663 137-5 232:0 3553
oy 91-1 113-8 190-8 322:0 496-8
5 W1p 17-1 667 1393 2337 3566
oy 101-5 122-1 194-7 3239 497-9

wq, performs the synchronous vibrations for which the coefficients of mode shapes a,, are
always positive (aq, > 0). Next, the asynchronous vibrations are executed with higher
frequencies w,, at the mode shape coefficients a,,, which are always negative (a,, < 0).
It is seen that in the case ¢ = 1 all three variants correspond with the simple system of
two physically and geometrically identical beams. For this interesting double-beam
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TABLE 7

Natural frequencies of double-beam system w;,(s~1); V2; ¢ =2

kx1073 n 1 2 3 4 5
0 W1n 19-7 789 177-6 3157 493-2
oy 279 111-7 251-3 446-8 698-1
1 W1p 23-8 84-1 180-3 3172 494-2
Wan 510 116-8 2534 4479 698-8
P D1y, 24-0 874 182-8 3187 495-2
Wap 67-8 1227 2555 449-1 699-6
3 Wiy 24-0 89-6 185-1 320-2 496-2
Wap 812 1292 257-8 450-2 700-3
4 (oM 24-1 91-0 187-2 3217 497-2
[P 927 135-8 260-0 4514 701-0
5 D1y, 24-1 920 189-1 3231 498-2
oy 1029 142-3 262-6 452-6 701-8
TABLE 8§

Natural frequencies of double-beam system w;,(s~1); V3; ¢ = 0-5

kx1073 n 1 2 3 4 5
0 W1y 19-7 79-0 1777 315-8 493-5
W2n 279 1117 2512 4466 6979
1 Wiy 286 835 180-3 3174 494-5
W2y 60-5 121-4 2553 4489 699-3
5 W1y 354 882 1829 3189 4955
Wy 769 1301 2593 451-1 700-8
3 W1y 459 929 1854 320-5 496-5
Wy 89-8 1381 2632 453-4 702-2
4 W1y 54-8 975 188:0 3220 497-5
W2y 100-8 145-6 2671 4556 703-6
5 W1y 627 102-0 190-5 3235 4985
Wy 110:6 152:6 2709 457-8 7050

system one has
2 4 -1 2 2 2 2 -1
wl,,:Kk,,m . a)z,,za)l,,—i-Qo, Q():ka N a1y, = 1, drpy = — 1.

The important conclusions can be drawn from the above expressions. The synchronous
natural frequencies w;, are not dependent on the stiffness modulus k unlike w,,. The
synchronous vibrations are performed by both beams with equal amplitudes (a,, = 1), and
the lower natural frequencies w,, are the same as for a single beam. As a consequence of this
an elastic layer is not deformed on the transverse direction. The asynchronous vibrations
are also performed with equal amplitudes (a,, = — 1), and the natural frequencies w,, are
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TABLE 9

Natural frequencies of double-beam system w;,(s~1); V3; ¢ =2

kx 1073 n 1 2 3 4 5
0 ©1n 140 55-8 1256 2233 3489
Wan 198 79-0 1778 3161 4939
) ©1n 118 52:9 1238 2222 3482
Wan 441 89-8 1832 3192 4959
5 O1n 116 515 1224 2212 3475
@an 58-7 98-8 1882 3222 4979
; ©1n 116 502 121-1 2203 346:8
@an 704 106°5 1929 3252 499-8
A ©1n 115 49-8 120-1 2194 3462
Wan 80-3 1135 197-4 3281 501-8
5 O1n 115 49-3 1191 2186 3456
Wan 89-2 1201 2017 3309 503-7
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Figure 3. Natural frequencies of double-beam system ;, as a function of elastic layer stiffness modulus k, for
various values of a parameter c; variant V1. Notation: iny, in,, in3 denote the graphs of w;, for ¢ =0-5; 1;
2 respectively i =1,2;n=1,2,....,5).
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Figure 4. Natural frequencies of double-beam system w;, as a function of elastic layer stiffness modulus k, for
various values of a parameter c; variant V2. Key as for Figure 3.

identical as for a single beam vibrating on an elastic foundation of stiffness modulus 2k.
The exemplary mode shapes of the free vibrations for this particular case are shown in
Figure 6.

From the numerical analysis it is seen that there is a general tendency to increase
the natural frequencies w;, in the case of increasing the layer stiffness modulus k
for each system variant. The increase for lower natural frequencies is greater than for
higher ones. For the variant V1 the simultaneous proportional variation of flexural
rigidity and mass of the second beam, implies that the synchronous quantities ay,
and w,, are not dependent on an assumed constant ¢ and layer stiffness modulus k
unlike the asynchronous quantities a,, and w,,. Their values diminish when a parameter
¢ grows. For the variant V2 the beams have the same masses and different flexural
rigidities. In general, the change of the second beam flexural rigidity causes the natural
frequencies to increase, especially the asynchronous frequencies w,, for lower harmonics.
For the variant V3 the beams have the same flexural rigidities and different masses.
The increase of the second beam mass generates the evident reduction of the natural
frequencies which is more considerable for the higher harmonics. This effect is greater for
the frequencies ,,.
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Figure 5. Natural frequencies of double-beam system w;, as a function of elastic layer stiffness modulus k, for
various values of a parameter ¢; variant V3. Key as for Figure 3.

5. CONCLUSIONS

The free transverse vibration theory of an elastically connected simply supported
double-beam complex system is developed. The solutions of the differential equations of
motion are formulated by the classical Bernoulli-Fourier method. The initial-value
problem is considered to find the final form of the free vibrations. Two infinite sequences of
the natural frequencies w1, ®,, (0, < ®,,) are determined. The free vibrations of a double
beam are realized by two kinds of motions: synchronous vibrations (a,, > 0) with lower
natural frequencies w,, and asynchronous vibrations (a,, < 0) with higher frequencies m,,,.
The numerical analysis shows the effect of physical parameters of the system on the natural
frequencies. It is seen that the nature of the free vibrations for a simply supported
double-beam system and for a double-string system [ 1, 2, 8] is similar. It can be also shown
that a corresponding two-degree-of-freedom complex discrete system described in
references [1,2,9] is an analogue of an elastically connected double-body complex
continuous system represented for example by a double-beam system [1, 38, 39, 46, 55, 61],
double-string system [1, 2, 8, 9] and double-membrane system [2, 68]. A beam supported
on an elastic foundation is a particular case of a double-beam system considered. The
solution procedure applied in this paper can be used for the investigation of general
elastically connected multi-beam complex system [2, 18, 24, 45].
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Figure 6. The mode shapes of vibration of an elastically connected simply supported double-beam system
corresponding to the first five pairs of the natural frequencies (case ¢ = 1).
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